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Abstract

+ Newton’s method has proved to be a very efficient method for solving strictly
convex unconstrained mininization problems. For the nonconvex case, various
modified Newton methods have been proposed.

In this paper, a new modified Newton method is presented. The method is
a linesearch method, utilizing the Cholesky factorization of a positive-definite
portion of the Hessian matrix. The search direction is defined as a linear combi-
nation of a descent direction and a direction of negative curvature. Theoretical
properties of the method are esiablished and its behaviour is studied when
applied to a set of test problems. / ) :
N N

Keywords: Unconstrained minimization, modified Newton method, negative
curvature, Cholesky factorization, linesearch, steplength algorithm

Py

1. Introduction
In this paper we propose a method for finding a local minimizer of the problem
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2 A modified Newton method

where f is a twice-coutinuously differentiable function. This fundamental problem
has been studied extensively and various methods have been proposed that use first
and second derivatives. The aim is to generate a sequence of iterates {z,}3Z, that
converge to a point £ satisfying the first- and second-order necessary conditions, i.e.,
Vf() is zero and Vf(Z) is positive semidefinite.

Most methods that utilize second-derivative information may be viewed as exten-
sions of Newton’s method, in the sense that they are identical to Newton’s method
in a neighbourhood where the Hessian is positive definite. If the Hessian is not
positive definite at some iterate, the Newton step imay not reduce the objective
function. Consequently, if the method is required to generate a sequence of improv-
ing estimates, some modification is needed. Such modified Newton methods have
been studied for two decades, see for example Fiacco and McCormick [FM68], Gill
and Murray [GM74}, McCormick [McC77), Fletcher and Freeman |tk /), Muku
and Polak [MP78], Kaniel and Dax (KD79], Moré and Sorensen [MS79] and Gold-
farb [Gol80].

Most modified Newton methods solve equations using a factorization of the Hes:
sian. The method proposed by Gill and Murray [GM74] uses a modified Cholesky
algorithm, in which a diagonal matrix is implicitly added to the H.ssian to make
it positive definite. A similar modified Cholesky algorithm based on an alternative
diagonal correction has been proposed by Schnabel and Eskow [SE88]. The methods
proposed by Fletcher and Freeman [FF77] and Moré and Sorensen [MS79] use the
Bunch-Parlett-Kaufman factorization of the Hessian (see [BP71}, [BK77)).

In the method proposed in this paper, the Cholesky algorithm with complete
pivoting is performed until all potential pivot elements are smaller than a preassigned
tolerance. The Cholesky factor is used to obtain a search direction, which may be
a linear combination of a descent direction and a direction of negative curvature.
It is shown that the gradient is zero and ‘the smallest eigenvalue of the Hessian
is bounded below by a small negative number at all limit points of the iterative
sequence. The magnitude of the bound may be predetermined by adjusting certain
preassigned tolerances.

2. Basics

2.1. Assumptions
The following assumptions are made throughout the paper:

A1l. The objective function is twice continuously differentiable.

A2. The level set S(z¢) = {z : f(z) < f(zo)} associated with the starting point rq
is compact.

2.2. Preassigned parameters

The proposed method depends on seven preassigned scalar parameters. These pa-
rameters specify different tolerances and for reference, their purpose and range of
values are are briefly summarized here.
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ce(0,1) is a parameter needed for the Cholesky factorization. It
is used to determine the dimension of the positive-definite
portion of the Hessian.

Rin > 0 is a parameter used to reject small pivots in the factorization.
No pivot elements smaller than €2, are accepted.

Gmins Cmax ~ define an acceptable interval for the initial steplength.

n € (0,1)  specifies a tolerance associated with the direction of negative
curvature.

i € (0, %) is a parameter used in the linesearch to guarantee a sufficient
decrease in f.

v €(0,1) is a parameter used to determine the rate of decrease of the
steplength in the backtracking linescarch.

2.3. Terminology

The idea of a descent direction and a direction of negative curvature are importlant
when computing the search direction. A vector pis a descent direction at a point z if
Vf(z)Tp < 0. Likewise, p is a direction of negative curvature at z if p? V2f(z)p < 0.

Given a symmetric matrix
. T NT
K = )
N G

with 7" nonsingular, the Schur complement of T in K will be denoted by h'/T', and
15 defined as
K/T=G-NT'NT.

The matrix A/T will be referred to as “the” Schur complement, when the matrix
1" is clear from the context. For further discussion of the Schur complement, see
Cottle [Cot74].

Throughout the paper, the subscript k£ denotes the iteration index, and sub-
scripts 7 and j denote particular components or columns of a matrix or vector.
When element ¢, j of a matrix Hy is addressed, we refer to it as h;j—i.e., the low-
crcase letter is used and the iteration subscript is dropped. Also, for vectors and
matrices, when the term norm is used, we mean the Euclid=an vector norm and the
corresponding induced matrix norm.

3. Preliminary Discussion

At the k-th iteration of the proposed method, z; denotes the current iteration point.
gi denotes Vf(zy) and Hy denotes V2f(z,). With Newton's method as the model,
it is desirable to compute the Newton search direction whenever f, is sufficiently
positive definite. If Il is known to be positive definite, such a direction may be
computed using the Cholesky factor of the Hessian. Whenever the Hessian is not
sufficiently positive definite, the method presented here is based on the Cholesky
factorization of a subset of the rows and columns of Hy. Complete pivoting is
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4 A modified Newton method

used, that is, the maximum diagonal element is chosen as the pivot at each step.
Suppose that n; steps of the factorization have been performed and let JI denote
the permutation matrix representing the column interchanges. We have

NTH T = ( Hu Hi ) and 117y, = ( o ) (3.1)
9k
21 Ha g2

where Hy; is a positive-definite prinicipal submatrix of order n;, with Cholesky
factor Ryy. If Ryp = RflT]In, we obtain the identity

ITH,IT = R, 0 I 0 Ry Ry
RL, I 0 M7H I/Hy, o I )’

where ITTHJT/H, is the Schur complement H,, — Hy Hi'H,,.

In order to simplify the notation, we shall assume that no permutations are
required. This implies that /7 is an identity matrix, and consequently TTH [T = .
We emphasize that this does not alter the theoretical results of later sections.

The factorization is usually terminated when all potential pivot elements in
Hi/Hy, are smaller than a tolerance e2max;{h;;}. However, if all diagonal elements
of the Hessian are small or negative, the pivot tolerance is given by €2h;, for a
preassigned positive constant hAn;,. Consequently, the pivot tolerance is defined as
e2hy, where

hy = max{m?x{hi.},h“ﬁ“}. (3.2)

The Cholesky factor is computed by rows, and the Schur complement is explic-
itly updated at each step of the factorization. Consequently, if the factorization is
terminated with ny < n, the elements of the final Schur complement are known.
Moreover, since we control the smallest acceptable pivot element, we have an upper
bound on the diagonal elements of the n, x ny matrix Hy/H;;. These properties of
the factorization will prove important when computing directions of negative cur-
vature. It is important to note that the dimensions of the matrices H,;. Hyo., I,
and Hq, depend on k.

The n x my matrix Z is defined to be

I .
Z_(0>, (3.3)

where the matrix I is an n; x n; identity matrix. The n X ny matrix Y is defined

to be
—H-!
Y = ( k l} iz > (3.1)

where we let y, denote the j-th column of Y.

Lemma 3.1. The following relations hold:
ZHiZ = Hu,
ZTH.Y =0 and
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Proof. The result follows from substituting for Hy/H,y, Z and Y using (3.1), (3.3)
and (3.4). 8

Again, we emphasize that the dimensions of Z and Y depend on k. The following
lemma shows that the columns of the n x n matrix M = ( zZ'Y ) form a basis for
R
Lemma 3.2. The n x n matriz M is nonsingular.

Proof. The result is immediate from the fact that det(M)=1. 8

The following lemma relates the smallest eigenvalue of H to the smailest eigen-
value of Hk/Hu.

Lemma 3.3. If H, is indefinite then
1
Amin( Hi/H11) < Amin(Hi) < W/\min(ﬂk/ﬂu)-

Proof. It follows from Lemma 3.1 that Hy/Hy; = YTH,Y. Let u denote an eigen-
vector of unit length corresponding to the smallest eigenvalue of Y TH Y . It follows
from (3.4) that uTYTYu > 1. Sylvester’s law of inertia yields Amin(YTH,Y) < 0,
giving ryTh v

u* kY u

U T

The proof of the second inequality is completed by noting that

WTYTH, Y u
wlYTyy

0> din(YTHY) = uTYTH Yu =

0> 2 '\min(Hk)

and
WTYTyu < |y)2.

Using the Courant-Fischer minimax characterization of eigenvalues (see e.g.,
Wilkinson [Wil65, page 101]), it follows that the smallest eigenvalue of Hy is the
global minimum of the problem

minimize vTH v
vERT (3.5)
subject to vly = 1.

Lemma 3.2 implies the existence of vectors v, and vy such that v = Zv, + Yv,.
Substituting for v in (3.5), and using the identity ZTHY = 0 yields the problem

" ényiplimiég o IZTH Zv, + vTYTH, Y v, 36)
subject to ngTsz + QngTYvY + szTYvY =1.

By definition, ZTH,.Z = Hy, is positive definite, and it follows that the global
minimum of (3.6) is no smaller than the global minimum of the problem

minimize oIYTH Y v,
vz ER™ vy ERM2 (3.7)
subject to ngTsz + 2UZZTYUY + vz‘)’TYvY =1.
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Since this is a problem where the gradient of the constraint is nonzero at all feasible
points, the constraint qualification always holds. Therefore, if v, and vy are global
minimizers, there must exist a Lagrange multiplier v such that the equations

v(ZTZv, + ZTYvy) = 0 (3.8a)
YTH.Yvy + v(YTZv, + YTY0,) = 0 (3.8b)
v1Z2TZv, + 201ZTv v, + vTYTY v, = 1 (3.8¢)

are satisfied.

The global minimum of (3.6) is negative, so that the global minimum of (3.7) is
also negative. If v is zero, it follows from (3.8b) that the global minimum of (3.7)
is zero, which is a contradiction. Therefore, (3.8a) implies that v, is determined by
vy, with

v, = —(Z272) 1 Z2Y v,.

Using this value of v, and the definitions of Z and Y, problem (3.7) is equivalent
to the problem

minimize v)7,'YTHkYUY
vy €R™2 (3.9)
subject to vTv, = 1.

The proof of the first inequality is completed by noting that the global minimum of
(3.9) is the smallest eigenvalue of YTH,Y. &

We also require a result that relates the smallest eigenvalue of a symmetric
matrix to the magnitude of its elements.

Lemma 3.4. If all elements of an n x n symmetric matrizc A have absolute values
less than p, no eigenvalue of A has absolute value larger than pn.

Proof. This is an immediate consequence of the Gerschgorin circle theorem-——sce
c.g., Golub and Van Loan [GV83, page 200]. 1

4. The Cholesky Factorization

At cach 1terate, a positive-definite principal minor of the Hessian is factorized as
outlined in the previous section. Some standard results concerning the Cholesky
factorization are needed to derive uniform bounds on ||#};!|]. These results are
reviewed in this section. For a complete discussion of the Cholesky factorization,
sce Iligham [Hig87].

Lemma 4.1. If a positive-definite n x n matriz A is factorized using the Cholesky
algorithm with complete pivoting, the elements of the Cholesky factor R have th
following properties:

T 27222 " 2 Tnn, (4.1a)
Irijl <7 for j=1,...,n, 1=1,...,7-L (1.1h)
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Proof. For any j > i the complete pivoting strategy yields

1-1
2 2 2
5 Srh =2 7h

l=i

from which (4.1a) follows. Since A is positive definite, it holds that r;; is positive,
and therefore r% > r%. &

Lemma 4.2. If R is the Cholesky factor of an n x n symmetric positive-definite
matriz obtained by complete pivoting, the elements of its inverse U have the following
properties.

2j-i—l
[uij| < for j=1,...,n, i1=1,...,57~1
T3
1 .
uj; = — for j=1,...,n
Tii
u; =0 for 3=1,...,n, i=j41,...,n,

Proof. The matrix U satisfies the equation RU = [I. The j-th column of this
equation gives

u;; =0 if 1>73
1
ujj = —
T35

1 ¢ o

Uiy = —;— Z LT if 1< ]

Uit
Lemma 4.1 implies that
J
luij] < Z luf if <.
=141
By induction, it follows that

2j-i—l

lul < —— if i<

12

This bound on the element growth is usually unduly pessimistic. However, for
certain special matrices, substantial element growth may occur—see e.g., Higham
[Hig87, page 6). What is important here is the ezistence of a bound. Such a bound
is needed in order to obtain a uniform bound on || H3!||.

Lemma 4.3. There ezists a positive constant cg, such that for all k, ||H}|| < co-
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Proof. Since no pivot element smaller than €?h.;, is accepted in the Cholesky
factorization we have r, ,, > €\/hmin. Lemma 4.2 implies that

2" :
(Ri})i; < ——== for i=1,....,ny and j=1,....n.

€V hmin

The identity H;' = R;'R;,T and Lemma 3.4 yield the desired result. @

5. Computation of the Search Direction

In the proposed method a search direction pi is computed at the k-th iterate. The
vector pi is defined in terms of two other vectors; a descent direction s; and a
direction of negative curvature dj.

5.1. Computation of the descent direction

The descent direction s; satisfies the equation

Bisk = —gxk. (5.1)
where
I, 0
By = . 5.2
k ( 0 hkl) (5.2)

and hy is defined by (3.2).

If ny = n, then By = Hy and s, is the Newton direction. If n, = n then
B = hpinl and s is a multiple of the steepest-descent direction. (In general. n,
need not be equal to the number of positive eigenvalues of H,. For example, the
matrix I —eel , where e denotes an n-vector with unit components, has n—1 positive
cigenvalues, but ny = 0. However, the results reported in Section 8 include only one
case where n; was zero.)

The vector si of (5.1) is computed by solving the triangular systems

- v
Rl u= -g1 and Ryv=u, with sp= ( ) .
v —(1/hi)g2

When s, is computed from these equations, the norms of s; and g are related in a

uniform way. The following lemma shows that s, satisfies descent properties similar
to those required by McCormick [McCT77].

Lemma 5.1. If s, is defined by (5.1) there exist positive constants ¢y and c; inde-
pendent of k, such that for all k, it holds that

~slgk > caillgell? and |lgell > c2llsl)-
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Proc?. The definition of By yields
1
max{|| A"l (1/h«)}

The bound on ||H}'|| obtained from Lemma 4.3 implies the existence of c;.
The definition of s; yields

—skge 2 min{min(Hiy'), (1/hx)} lgel?.
Since H,, is positive definite and symmetric, we may employ the identity

1
max(H11) — [[Hull’

The compactness of S(zxg) and the smoothness of f ensure the existence of ¢;. 1

lgell = llsll-

/\min(lll_ll) = b\

5.2. Computation of the direction of negative curvature

The formula for di is derived from a method for computing directions of negative
curvature in quadratic programming (see Forsgren et al. [FGMB89]). If the variables
corresponding to H,, are temporarily locked at their current values, a direction of
negative curvature is defined by releasing one or two of the locked variables. This
scheme corresponds to using either y; or y; & y; as a direction of negative curvature
for a specific choice of 7 and j. The choice of 7 and j is determined by the values of
the elements of Hy/H,. When the factorization of Hy is terminated, these elements
y‘-THkyj are known for 1 < 1, j < ng, without explicitly computing the vectors y,
(see Lemrma 3.1).

Let 7 € {0,1) denote a preassigned constant and let p denote max,, ]y,THkyJ|.
The vector di is computed as follows.

if p < €¢hi/n then
de =0 (5.3a)

else if y/f,y, = —p for some i then
di = 1y, (5.3b)

else if [yiTllkyJI = p for some 1 # j then

1
di = t5(w - sgn(y! Hy,)y,) (5.3¢)

end if

In each case, we choosc the sign of d; so that ngdk <0.

In the Cholesky algorithm, the pivot elements are chosen from the diagonal
of the Schur complement, and it follows that yTH,y, < e*hy for i = 1, ..., ny.
Consequently, if p > ¢2hi/n then y:rllky,- < p for all i and dy is well defined.
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In order to obtain di, it is necessary to compute y, or y, £ y,. This is done by
solving an equation involving Ry and Ry2. For example, the computation of y, + y,
requires the solution of the equation

1 ) u
Ryu= —'\—/—5[212((‘, + C_,') with  y + ¥y, =

1 . (5.1)
)

The following lemma slows that any ncuzero dj is a direction of negative cur-

vature.

Lemma 5.2. If dx is nonzero then

) . L= p)ehy
gld, <0 and dkr][kdk < ! e Ly
U
Proof. In each case. the sign of di is chosen so that gld, < 0. Let p denote
max; , Iy,-rlfkyjl. If dy is given by (5.3b), then d,kT_de,c =ylHy, = —p. If di is given
by (5.3c), then
1
ditledy = SOl + Yl H,) = Ll |-

where Iy,-[llkyjl = p. Since yTH, y, and y]THky]- are both less than or equal to *hy.
it holds that (!Z'dek < 2hy — p. The inequality p > €2hy/n implies that in either
case )
; 1 - h
dTH d, < _{ = m)ehe
as required.

7 ’
1

of Hy.

Finally. we relate the curvature along any nonzero di to the smallest eigenvalue

Lemma 5.3. [f dy is nonzero, there exists a positive constant cs, independent of k.
such that for all k

dfH, d,
ok k< ey Amin( 1)
(l‘{dk > €3 1 ( k)

Proof. Let p denote max, |y;-1‘11ky1|. If di is nonzero, it follows from the proof of
hence

Lemma 5.2 that (iZIIkrlk < =(1=7)p. Lemma 3.4 implies that Apin( i/ H11) > —pn.

1~
dltldy € — Al He/ H ).
3
From Lemma 3.3 we have

(l[llk(i,\, 1 —

Ui

T F /\min ).
d,ﬁdk T n dkrdk ()
Now (5.3b), (5.3¢) and (5.1) may be used to obain

D< didy < YTV <+l e
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The uniform boundedness of ||d;|| now follows from Lemma 4.3 and the assumptions

on f. 1

The significance of this lemma is that a nonzero di cannot be an arbitrarily poor
direction of negative curvature compared to the eigenvector corresponding to the
smallest eigenvalue of Hy (which is the best possible choice). The vector dx may be
zero even if Hy is indefinite. However, when dy is zero, the following lemma gives a
bound on the indefiniteness of Hy.

Lemma 5.4. If di = 0 then A\yn(Hi) > —nethi/n.

Proof. If n; = 0, then H; is positive definite and Agn(Hi) > 0. Assume that
ny > 0. Since di = 0, it holds that p < €2h;/n. This result, together with Lemma 3.4
implies that

2
nin He/ Hu) 2 =map > <22,
and it follows from Lemma 3.3 that
Zh
Amin( He) > 2%,
|
5.3. Computation of the search direction
The search direction py is defined to be
Pk = sk + Brdk, (5.5)
where the scalar 0 is defined as follows:
if dy #0 and sTH_s, > dTH,d, then
2
5 = _sfH,d, N \J (skTdek) 1o sTH s, (5.62)
diH, d, d{dek dTH,d,
else
Be=0 (5.6b)
end if

Note that if ny = 0 (i.e., if Hy is sufficiently positive definite), pi is the Newton
direction. The choice of §i is important only if di is nonzero. The particular choice
of () given above is motivated by the following lemma, which also shows that if d;
is nonzero, pi is also a direction of negative curvature.

Lemma 5.5. If d; is nonzcro, then 3 > 0 and plH,p, < d1H d,.
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Proof. If dy # 0 and 8¢ = 0 then p{]lkpk = sZ'Hksk < d{]lkdk. If dp # 0 and
Br # 0 it follows from the definition of 8 that dkT]Ikdk < s{f{ksk and the square
root in (5.6a) is well defined. In this case 3; is the unique positive number that
satisfies the quadratic equation (sx + Bidi ) THi(sk + Brdy) = dZdek. [ ]

The following lemma shows that the norm of py is uniformly bounded.
Lemma 5.8. If p; is defined by (5.5), ||p«|l is uniformly bounded.

Proof. Lemma 5.1 and the compactness of S(zg) imply that {[sg(| is uniformly
bounded.

From the proof of Lemma 5.3 it follows that ||dk]| is uniformly bounded. Lemma
5.2 guarantees that the denominator of (5.6a} is uniformly bounded away from zero.
Since f € C? and the level set S(zo) is compact, it follows that 3, is uniformly
bounded, as required.

One consequence of Lemma 5.6 is that if dj is nonzero, pi cannot be an arbitrarily
poor direction of negative curvature.

6. Computation of the Iterates

Unlike the methods suggested by McCormick [McC77], Moré and Sorensen [MS79)]
and Goldfarb [Gol80], if H, is indefinite, the next iterate lies on a line emanating
from z;, instead of an arc. At a given iterate x, we will consider the case when an
initial estimate ay € [Gmin, Omax) Of the steplength along pi is given. One way of
generating such an ay is discussed in Section 8.1.

We follow McCormick [McC77] and guarantee a sufficient decrease by comparing
f toadamped truncated Taylor series consisting of two or three terms. The resulting
algorithm may be viewed as an Armijo-type linesearch [Arm66], extended to the
indefinite case.

Let u and v denote preassigned constants such that g € (O,-zl) and v € (0.1}
Given 74 and ok € [@min, @max|. the number i is defined to be the smallest non-
negative integer ¢ such that

flzi + v arpr) < fz6) + py ogipy if di =0: (6.1a)
/1'2‘72‘0’2
2

f(ze + Y oupi) < f(zi) + 1wy aqgipy + piHepe if di # 0. (6.1b)

The next iterate zi4q is defined as
Ty = Ik + vk oy pk. (6.2)

A complete description of the modified Newton method is given in Algorithm 6.1.
In order to show that the algorithm is well defined, we present two lemmas. which
are slightly modified forms of a lemma given by Moré and Sorensen [MS79, Lemma
2.2).
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Specify tolerances €, Amin, Omin, @max, 7, £ and 7;
k «— 0; converged — false;
repeat
Evaluate fi, gx and Hy;
Factorize Hy to obtain ny, ny, Ryy, Ry2 and Hy/Hyy;
Compute s; and dy;
if (ny = n or dy = 0) then
Pk — Sk
else
Compute Sy;
Pk — Sk + Brdk;
end if
converged — convergence_test;
if (not converged) then
Compute ay € {@mins Amax);
Compute i, so that f(z + 7i*akpk) is sufficiently decreased;
Tipr — Tk + 1R oupr; k—k+1;
end if
until converged;

Algorithm 6.1. A modified Newton method for unconstrained minimization

Lemma 6.1. Ifu € (0,%) is a given constant and ¢ is a continuously differentiable
univariate function such that ©'(0) < 0, then there ezists a positive scalar { such
that

@(¢) < ¢(0) + pe'(0)¢
for ¢ € (0,¢).

Proof. The Taylor-series expansion for a positive ( yields

1 X .

(0 = 90) - 1’ (0)0) = (1 - p)¢'(0) + ¢'(6¢) - ¥'(0),
for some @ € (0,1), and it follows that

1
Jim, EMO = ¢(0) — pe'(0)¢) = (1 = p)#'(0) < 0.

Hence, there exists a positive number ( such that
©(¢) = ¢(0) — p’(0)¢ < 0

for all ¢ € (0,{). ®
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Lemma 6.2. If u € (0, %) 1s a given constant and ¢ 15 a twice-continuously differ-
entiable univariate function such that ¢'(0) < 0 and ¢"(0) < 0, then there ezists a
positive scalar ( such that

-2
P(C) < 9(0) + nef(0)C + 120" (0)%

Jor ¢ € (0,0).
Proof. The Taylor-series expansion for a positive ¢ yields

1 , . 2 1 <2 1_ﬂ2 " L, "
E(tp(C)—v(O)— P(0)C = 1°"(0) ) = —5—9"(0) + 5("(6C) = ¢"(0))

for some 8 € (0,1), and it follows that
. 1 - - 2 C2 1 - /12 "
Jim, Fw(c) = @(0) = (0 - 15 "(0) ) = —5=¢"(0) < 0.
Hence, there exists a positive number ¢ such that

-2
#() = #(0) = F(0)C - 1 (0)% < 0.

for all ¢ € (0,¢). The proof is completed by noting that
#'(0)¢ < e (0).
1
We can now show that a sequence {zx}72, generated by (6.2) is well defined.
Lemma 6.3. The sequence {xx}2, is well defined.

Proof. First assume that dj is nonzero. It follows from Lemmas 5.2 and 5.5 that
9P < 0 and plH,p, < 0. If we define ¢(¢) = f(xi + (pi). we have 2(0) = gfp,
and ¢"(0) = kaIIkpk. Lemma 6.2 implies that given oy, there exists a nonnegative
integer i such that (6.1b) holds.

Assume that di is zero so that py = si. If s, = 0, then (6.1a) holds for i, = 0.
If s # 0, then Lemma 5.1 implies that ngsk < 0. The application of Lemma 6.1
with @(¢) = f(zx + (pi) implics that there exists an # such that (6.1a) holds. &

It is of interest to study the behaviour of f(x) along pi. It follows from Tavlor-
series expansion that

-2
Sk + Gepr) = f(1) + Quodpi + %Pfﬂm + k(@ kP Cr)
where the remainder term is given by
-2
(@, s ) = K plT3 (k4 Ouipi) = V3f (i) (6.3)

for some 8; € (0,1).
In the following lemma, we establish the behaviour of the remainder term as &
tends to infinity and (i tends to zero.
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Lemma 6.4. Iflim_., (; = 0 then

lim re( Tk, Pi, (k)

k—oo CZ =0.

Proof. Using properties of norms and (6.3} we get

2
lrk(xkégkvoc)' < ”p;“ ||V2f(1‘k + okaPk) _ sz(zlc)“
Assumption A2 and Lemma 5.6 imply that ||z|| and ||p«|| are uniformly bounded.
Since limy_, o (& = 0 it follows that (k| is uniformly bounded. Therefore, there exists
a compact set C such that z, € C and x4 + 0, (xpx € C for all k. Since  is compact
and f is twice continuously differentiable, it follows that || V2f|| : C — R is uniformly
continuous. Hence, for all € > 0 there exists a § > 0 such that ||V?f(z)- V2f(y)|| < €
for all z,y € C such that ||z — y|| < 6. Since limy_oo (¢ = 0 and ||px|| is uniformly
bounded, for each & there exists a A such that {[§Cipil| < b forall k > K. 1

If an infinite sequence {24}, is generated, the following lemma shows that
there are only a finite number of iterates where a direction of negative curvature is
computed.

Lemma 6.5. For any sequence {zx}32., there must ezxist a finite K such that di = 0
forallk > K.

Proof. The sequence {f(x\)}2, is decreasing and Assumptions Al and A2 imply
that this sequence is bounded from below, and it follows that { f(z)}52, converges
to a limit f. Assume that there exists an infinite subsequence {z;}xes such that
di # 0 for all k € J. From the equation

f = f(zo) = Y _(f(zks1) = flz4))
k=0

and the fact that each term in this sum is nonpositive, it follows that

[ = f(20) < > _(f(zes1) = f(z4))

keJ

From Lemmas 5.2 and 5.5 we obtain

(1 — n)e¢hy

PEHpy < dlHdy < - .

for all k € J. The inequalities g{p, < 0 and ak > ami, imply that

)< 3 - = D€ Amiy
keJ 2n

2”‘ amm(
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Since f is finite this inequality must imply that i — oc as k — >0, for k € J.
Further, from the definition of i

-1 =1 T iyt
f(ze + 7% owp) > f(2h) + 177 aggiepi + 5 Pellipy-
The Taylor-series expansion yields
(T, Pr, 1 k) (1—u) r (1-p%) ¢
y2ix=Na? > _,Yik_lakgkpk - —.é_—pk”kl’k-

Using the fact that glp, <0, it follows from Lemmas 5.2 and 5.5 that

re(Ze kY T lew) (L= g1 = ) huin (6.4)
Y2012 7 . .
Taking the limit in (6.4) noting that ax < apay it follows from Lemma 6.4 that

(1~ /‘2)(1 - '7)62hmin
27 '

02

which is a contradiction. Therefore, there exists a finite A" such that dy is zero for
al k> K. 1

7. Global Convergence Properties

Using the established lemmas we can derive the following theorem concerning the
limit points of the sequence {x;}72,.

Theorem 7.1. If an infinite scquence {x, )72, is generated as defined in (6.2), any
limit point T satisfies

2
VI =0 and dnin( V(D 2 ~E

where h = max{mx; {(V*f(£))i;}. hmin}

Proof. Without loss of generality, it may be assumed that the sequence {a )2,
converges to some point r. Lemma 6.5 implies that there exists a A" such that
di = 0 for all &k > I, so that py = s for K > K. Therefore, Lemma 5.4 and the
continuity of V2f imply that

ne2h
n

/\mixl(v2f('t)) Z -

Assume that there exists an [ such that ¢ < [ for all & > KA. It follows from
Lemma 5.1 that

faigr) = fax) < v ool < = evaminllonll?.
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Since f(Z) is finite, it follows that Vf(z) = 0.
If the integers i are not bounded above, then it may be assumed without loss
of generality that i — 0o as k£ — 0o. From the definition of ¢ it follows that

flax + 7 owsk) = flzx) > pr* " loggisy
for all £ > K. The Taylor-series expansion yields
ylg
2

re(Zk, sk, 1L ak) > —(

kT T
siH, s, + - 1-— S,.
kT kSk gy H)gi Sk

Using Lemma 5.1 it follows that

Ti(Tky Sk, 7 " Lak)
Yk loy

v Lay

2

stHipse + > (1= pallgxl?

Taking the limit and using Lemmas 5.6 and 6.4 we have Vf(Z) = 0 as required. 3

As stated in the following corollary, a consequence of this theorem is that if two
consequent iterates are identical, a limit point is found, since all subsequent iterates
are identical.

Corollary 7.1. If two consecutive iterates z;. and x4y are identical, the point z;
satisfies

2
Vf(zr) =0 and ’\min(sz(a:k)) > _ncnhk.

The assumptions made are not sufficient to guarantee that the sequence {zx}32,
is convergent. Some additional conditions are needed to guarantee that a generated
sequence has a unique limit point. As observed by Moré and Sorensen [MS79}, if
we make the additional assumption that there are only a finite number of points in
S(zo) where the gradient vanishes, the following result may be used.

Lemma 7.1. (Ortega and Rheinboldt [OR70]) Suppose that a generated se-
quence {z4}32 satisfies

lim (zg4e1 —2k) =0 and lim Vf(z,) = 0.
k— 00 k=00

Furthermore, suppose that the level set S(zo) is compact. If there are only a finite
number of points in S(zo) where the gradient vanishes, then there ezists a point ¥
such that

lim z, =% and Vf(z)=0.

k—oo

Proof. See Ortega and Rheinboldt [OR70, Theorem 14.1.5]. &
In the method proposed in this paper, it follows from Lemma 6.5 that there is

a K such that p, = s for k > K. From Lemma 5.1 we get limy_,, s = 0. Using
Lemma 7.1 the following corollary may be established.
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Corollary 7.2. If there are only a finite number of points in S(zq) where the gra-
dient vanishes, the sequence {z}{2, converges to a point & satisfying

Vf(£)=0 and Amin(vzf(f»z—ﬁ‘;—’;.

where h = max{max;{(Vf(&))u}, Amin}. B

8. Test Problems and Numerical Results

A Fortran version of the algorithm was run on two types of test problems: nonlin-
ear least-squares problems and barrier problems. The computer used was a DEC
VAXstation II, with relative machine precision €,,x=1.39 x 10717,

8.1. Parameter values

Various values of the parameters discussed in Section 2.2 were investigated. The
results presented here were obtained with the following values:

€ 10-%  (specifies smallest acceptable pivot element)
Eagn 1072 (smallest acceptable maximum diagonal element nf Hyy)
n 1073 (tolerance for the acceptance of dy)

Qmin 107'°  (minimum step in the linesearch)
Qmax 10 (maximum step in the linesearch)
I 0.1 (damping factor used in the truncated Taylor polynomial)
v 0.5 (parameter for the backtracking).

The value of € is a tradeoff between a small value that gives the Newton search
direction when Hy is positive definite, and a value large enough to ensure that f;;
is well-conditioned. Theoretically, a very small value of € is preferred, since this is
more likely to give limit points that satisfy the first- and second-order necessary
conditions (see Theorem 7.1). However, small values of € may give ill-conditioned
Cholesky factors which may cause inaccurate search directions. Our experiments
indicate that the overall performance of the method is not sensitive to the precise
value of e.

Given the value of €, hy,;, is selected to ensure that the minimum pivot element
is always greater than the machine precision. In the experiments presented here,
this value of hp,;, affected only two iterates.

The value of  was varied by several orders of magnitude from the chosen value,
without changing the overall performance. The value selected helps to avoid com-
puting directions of negative curvature when the elements of the Schur complement
are all small in magnitude.

The steplength aj is computed using the linesearch procedure of Gill et al.
(GMSWT79] with default parameter settings. At each step of the linesearch both the
function and gradient are evaluated. The value of i above was chosen to ensure that
1 = 0 is accepted in most cases. Since the value of i in (6.2) differed from zero
in only two cases, we deduce that the choice of v is not crucial. The values of a,,,
and amax were designed to ensure that the steplength produced by une nnesearen
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is accepted in almost all cases. In practice, a sensible choice of amax can improve
efficiency.

The efficiency of the linesearch is affected by the initial estimate of a. Whenever
d; was zero, the choice of a = 1 was found to be adequate. However, the unit step
tended to overestimate the accepted step when d; was nonzero. To allow for this,
an initial step of 0.01 was used in these cases.

8.2. Least-squares test problems

The least-squares test problems comprise a suite of 45 problems, given by Fra-
ley [Fra88]. Many of these problems are known to be hard to solve, in spite of their
small size. A summary of results obtained on these problems when applying dif-
ferent least-squares methods and methods for unconstrained minimization is given
in Fraley [Fra88]. Our numbering of the problems is the same as in Fraley’s study.
The formulations for problems 1-35¢ are given by Moré et al. [MGHS81], problems
36a-36d are presented in Fraley [Fra88), problems 37-38 are given by Salane [Sal87],
problems 39a—41g are from McKeown [McK75], problems 42a-43f originate from de
Villiers and Glasser [dVG81] and problems 44a-45¢ are from Dennis et al. [DGV85].

We accept zx as a solution of a least-squares problem if one of the following two
conditions are met:

d. = 0
g < v
or
dp = 0
Ca. flzeo1) = flzr) < e+ f(z0)))
lze = ze-all < VEu(l + |lzil])
oell < Yem(1+|f(zi)D)-

The first condition is intended to accept points that approximately satisfy the
first- and second-order necessary conditions for optimality. The second condition is
intended to test when the sequence {zx}{2 has converged. For a detailed discussion
of convergence criteria for unconstrained optimization, see Gill et al. [GMWS81,
Chapter 8].

In some problems it was not possible to evaluate the function at all tiial points.
In these cases, the trial step was repeatedly decreased by a factor 4 (¥ = 0.5) until f
could be evaluated. This additional backtracking was necessary for problems 42a and
43d because of an implicit nonnegativity constraint on one variable; and for problem
19 because of overflow during the calculation of the objective function. Similarly,
the initial step at the starting point of problem 11 was repeatedly decreased until
the Hessian and gradient were not numerically zero. These trial function evaluations
are included in the number of function evaluations shown.

In problems 2, 36a, 366 and 36d, the algorithm failed to converge within the
permitted number of iterations. In all cases, this non-convergence is a consequence
of the Hessian being very ili-conditioned at the solution. Although the algorithm did
not converge in these cases, the objective value was close to the optimal objective
value.




20 A modified Newton tnethod

nr  name n m fx fgxil x(Hy1) k nf conv *n; #dy

1 rose 2 2 6.317050E-32 6.0E-15 2.E+03 22 29 yo 0 [+]

2 froth 2 2 2.449213E+01 1.7E-07 1.E+03 7 11 y2 [o] o

3 poulbs 2 1 2.837351E-05 1.1E+01 1.E+00 600 2079 nS 693 1

4 brownbs 2 1 3.851860E-34 2.8E-11 1.E+00 4 5 y1 3 o

S beale 2 2 1.007290E-23 3.8E-12 1 .E+02 8 18 yo 3 3

6 jensam 2 2 6.218109E+01 2.0E-13 8.E+00 10 11 y O (V] 0

7 helix 3 3 2.943716E-35 2.5E-17 3.E+02 14 25 yo 5 S

8 bard 3 3 4.107439E-03 4.4E-16 2.E+03 14 21 yo 1 1

9 gauss 3 3 5.639664E-09 4.9E-11 5.E+01 2 3 y o (4] 0
10 meyer 3 2 2.661418E+04 4.1E+01 6.E+07 24 74 n 4 23 2
11 gulf 3 3 8.612303E-20 2 OE-10 1.E+10 151 251 y o 8 7
12 box 3 3 8.939108E-30 1.3E-15 7 .E+03 14 19 yoO 1 o]
13 sing 4 4 1.300555E-13 1.8E-09 1.E+08 21 22 yo [} (o]
14 wood 4q 4 0.000000E+00 0.0E+00 5.E+02 39 52 yo 1 1
15 kowosb 4 4 1.537528E-04 3.6E-11 2.E+03 9 23 yo 4 4
16 brownden 4 4 4.291110E+04 1.6E-10 6.E+01 8 ] yo ] o]
17 osbl S5 5 2.732447E-05 3.6E-09 1.E+09 65 147 yo 28 28
18 exp6 6 5 2.827825E-03 1.9E-09 1.E+05 48 136 y1 46 37
19 osb2 11 11 2.006887E-02 2.2E-12 4 .E+03 16 37 yo 6 6
20a watson06 6 6 1.143835E-03 5.2E-13 2.E+04 12 13 y O 0 [
20b watson09 9 9 6.998801E-07 7.5E-16 2 .E+08 13 14 yo (o] 0]
20c¢ watsonl2 12 11 4.178499E-09 6.4E-08 8 .E+09 31 38 y3 32 1
204 watson20 20 13 6.886510E-08 1.BE-08 2.E+11 53 107 y3 54 o]
21a rosex 10 10 3.158525E-31 1.3E-14 2.E+03 22 29 yo 0 ]
21v rosex 20 20 6.317050E-31 1.9E-14 2.E+03 22 29 yO [v] 0
22a singx 12 12 3.901678E-13 3.2E-09 1.E+08 21 22 y O Q (4]
22b singx2 20 20 31.284503E-13 1.2E-09 2.E+08 22 23 yo o} 4]
23a penid 4 4 1.124989E-05 7.SE-11 5.E+03 34 43 yo v} 4]
23v penilo 10 10 3.543826E-05 1.3E-12 1.E+03 36 44 yo 0 o]
24a penii4q 4 4 4.688147E-06 1.1E-10 2.E+06 110 158 y o 0 0
24b peniilo 10 10 1.468303E-04 1.0E-09 2.E+06 93 132 yo 0 0
25a vardimi 10 10 8.680345E-27 2.6E-12 1.E+02 14 15 y O o] 0o
25b vardim2 20 20 0.000000E+00 O.CE+00 4 .E+0. 18 19 y O 0 0
26a trig 10 10 1.721941E-24 1.3E-12 8.E+00 7 11 yoO 1 1
26b trig2 20 20 3.074585E-28 1.2E-14 4 .E+00 11 22 yo B S
27a brownall 10 10 2.651544E-28 2.3E-14 2.E+03 8 9 y o (o] 0
27 brownal2 20 20 2.462302E-18 3.3E-09 1.E+04 9 10 yo (o] N
28a discbvl 10 10 9.287387E-25 1.7E-13 9.E+01 3 4 yo 0 [}
28b discbv2 20 20 1.182787E-25 1.7E-14 7 .E+02 3 4 yo 0 o]
29a disciel 10 10 1.997048E-22 2.5E-11 1.E+00 3 4 yo [} 4]
29b discie2 20 20 3.293268E-22 3.2E-11 1.E+00 3 4 yo o] 0
30a broytril 10 10 8.955574E-33 7.6E-16 2 .E+00 6 7 yo 0 V]
30b broytri2 20 20 2.051115E-32 1.1E-15 2.E+00 6 7 y o o 4]
31a broybani 10 10 6.032100E-27 $.2E-13 3.E+00 8 9 yo ] (o]
31b broyban2 20 20 6.067580E-27 5.2E-13 3.E+00 8 9 yo 0 0
32 lin 10 10 5.000000E+00 9.7E-16 1.E+00 1 2 yo [o] o
a3 lint 10 1 2.317073E+00 2.8E-11 1.E+00 1 3 y1 2 o]
34 1in0 10 1 3.067568E+00 4 .0E-11 1.E+00 1 3 y1 2 (o]
35a chebyqui 8 8 1.758437E-03 S .4E-15 2.E+01 19 34 y o 11 11

Table 8.1: Results for least-squares

test problems 1-35a.
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nr  name n m Sr Noxll x(Hy1) k nf conv #nf  wdy
35> chebyqu2 9 9 9.668790E-22 B8.5E-11 2.E+02 34 84 yo 21 27
35¢ chebyqu3 10 10 3.251977E-03 6.4E-11 2 .E+02 24 46 yo 16 16
36a msqrtii 4 4 7.839519E-11 5.5E-06 6.E+10 600 885 nS o] 0
36b msqrt2i 9 7 2.066297E-09 1.8E-05 2,E+08 600 2175 ns 421 361
36c msqrt3i 9 8 6.499547E-16 2.1E-08 4 .E+08 28 44 n 4 2 1
36d msqrt4i 9 9 2.105165E-09 1.6E-06 §5.E+10 600 2154 ns$ 415 361
37 han1 2 2 1.043501E+02 1.5E-12 3 .E+04 5 9 yo 1 (s}
38  han2 3 3 1.983216E+01 2.7E-10 1.E+06 6 11 yo 0 0
3%9a mckia 2 2 9.180060E-02 1.0E-17 7.E+00 3 4 gyo 0 )
3%b  mckib 2 2 9.180060E-02 7.7E-12 5.E+00 3 4 gyo ) o
39¢  mckic 2 2 9.180060E-02 1.3E-13  2.E+00 3 4 yo 0 o
39d  mckid 2 2 9.180060E-02 2.2E-17 2.E+00 3 6 yoO o 0
3% mckile 2 2 9.180060E-02 1.0E-14 6.E+00 7 8 yo ) 0
39f mckif 2 2 9.180060E-02 3.9E-18 7.E+00 10 11 y O o] [o]
39g mckig 2 2 9.180060E-02 8.8E-10 7.E+00 12 13 yo 0 [\]
40a mck2a 3 3 3.982776E-01 4.2E-15 2.E+01 3 4 y o 4] [¢]
40b mck2b 3 3 3.982776E-01 1.2E-10 8.E+00 3 4 yo (4] 0
40c mck2c 3 3 3.982776E-01 6.6E-13 2.E+00 4 S yo 0 0
40d mck2d 3 3 3.982776E-01 1.0E-16 4 _.E+00 5 6 yo (o] 0
40e mck2e 3 3 3.982776E-01 6.7E-17 1.E+01 7 8 y o 0 0
40f mck2f 3 3 3.982776E-01 5.4E-12 2_E+01 9 10 yo o [o]
40g  mck2g 3 3 3.982776E-01 1.4E-15 2.E+01 12 13 gyo 0 o
41a  mck3a § § 5.000001E~01 8.3E-10 4.E+00 2 3 yo o )
41b  mck3b S 5 5.000001E-01 6.7E-14 3.E+00 3 4 y o (o] o]
41c mck3c 5 S S5 .000001E-01 4.8E-12 3.E+00 7 8 y o 4} o
41d  mckad 5 5 5.000001E-01 9.6E-15 2.E+00 8 9 yo 0 o
41e mck3e 5 5 5.000001E-01 3.7E-10 2.E+00 10 11 yo 0 0
41f  mck3f 5 5 5.000001E~01 1.7TE-11 3.E+00 13 14 yo 0 0
41g mck3g 5 5 5.000001E~01 2.1E-12 3 .E+00 16 17 yo 0 0
42a devglia 4 4 3.593754E~28 7.3E-12 5.E+04 16 27 yo 2 2
42b  devgib 4 4 2.485558E-23 1.2E-09 5.E+04 28 s1 yo 6 6
42¢  devglc 4 4 2.223602E~28 5.3E-12 5.E+04 21 43 yo 5 S
424 devgld 4 4 1.910276E~28 7.0E-12 5.E+04 19 26 yoO 2 2
43a devg2a 5 5 1.390367E~-29 1.4E-12 8_.E+06 17 26 yo 3 3
43b  devg2b 5 S 1.352306E~25 9.4E-11 8 .E+06 16 29 yo 4 4
43c davg2c s 5 5.445605E~29 §5.4E-12 B8.E+06 13 27 yo 6 5
43d devg2d 5 S 9.207747E~22 2.1E-09 8.E+06 29 50 y O S 4
43e devg2e 5 S 1.059680E~21 2.8E-09 B8.E+06 17 30 yo 5 S
43f devg2f 5 5 3.254051E-30 2.8E-13 8.E+06 18 32 yo 4 4
44a dgv6a 6 6 3.982829E-24 2.3E-11 7 .E+06 38 121 y o 29 29
44b  dgvéd 6 6 1.255706E-31 1.6E-14 4 E+02 12 26 yoO 4 4
44c  dgvée 6 6 8.742151E-25 8.2E-10 4.E+11 392 833 y O 385 83
44d dgved 6 6 3.416587E-26 1.2E-10 2.E+10 316 764 yo 306 126
44e dgv6e 6 6 1.306575E~-30 1.1E-12 1 .E+08 175 516 yo 164 163
45a  dgvBa 8 8 5.542109E-26 1.4E-11 7.E+06 39 116 y O 31 3t
45b  dgv8b 8 8 3.710801E-33 6.7E-16 2.E+03 16 6 yo 7 7
45¢ dgv8c 8 8 1.234906E-30 1.3E-11 9 .E+11 484 1003 yo 480 134
454  dgvsd 8 8 1.970398E-30 3.4E-12 4.E+10 480 1053 y O 470 174
45e¢ dgv8e 8 8 3.968786E-31 6.0E-13 4.E+08 349 953 yo 339 338

Table 8.2: Results for least-squares test problems 35b-45¢.
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nr  name 10t 10? wt 1t ar  name 1wt w2 et
1 rose 5 12 16 17 35b  chebyqu2 20 29 29 31
2 froth 2 3 4 4 35¢  chebyqu3 11 14 19 21
3 powlbs 1 4 8 235 36a msqrtili 2 4 6 10
4 brownbs 3 3 3 3 36b msqrt2i 2 4 6 10
5 beale 2 3 4 5 36c msqrt3i 2 3 5 7
6 jensam 2 3 5 6 36d msqrt4i 2 4 6 10
7 helix 4 6 7 8 37 hani 1 2 2 3
8 bard 2 4 6 8 38 han2 1 2 3 3
9 gauss 1 1 1 1 39a mckla 1 1 1 1
10 meyer 1 2 2 3 39b mckib 1 1 1 2
11 gulf 1 1 2 6 39¢  mckic 1 1 1 2
12 box 2 3 5 7 334 mckid 2 2 3 3
13 sing 2 3 S 6 39e¢ mckie 2 3 4 5
14 wood 1 3 4 26 391 mckif 2 3 5 6
15 kowosb 3 5 6 7 39g mckig 2 3 B 6
16 brownden 2 4 5 5 40a mck2a 1 1 1 1
17 osbl 12 28 32 37 40b mck2b 1 1 2 2
18 expb 10 20 27 32 40c  mck2c 1 2 2 2
19 osb2 7 9 11 12 40d mck2d 1 2 2 3
20a watsonO6 1 2 7 40e mckle 2 3 4 4
20b watson09 1 2 5 8 40f mck2f 2 3 5 6
20c  watsonl2 1 3 4 6 40g mck2g 2 3 5 6
20d watson20 4 7 12 17 4ia mck3a 1 1 1 1
21ia rosex S 12 16 17 41ib mck3b 1 1 1 1
21b  rosex2 5 12 16 17 41c  mck3c 2 3 4 5
22a  singx 2 3 S 6 41d  mck3d 1 3 4 5
22b  singx2 2 3 5 6 41e mck3e 2 4 S 6
23a  peni4 2 3 5 6 41f  mck3f 2 3 S 6
23b  peniil0 2 3 S 6 41g mck3g 2 3 S 6
24a  peniid 2 2 3 4 42a devgla 8 10 12 12
24b  peniilO 2 3 ] S 42b devgld 20 23 24 25
25a vardimil 2 2 5 6 42¢  devglc 14 16 17 18
25b vardim2 2 3 S 6 42d  devgild 1 14 14 15
26a trig 3 4 4 5 43a devg2a 2 3 5 6
26b  trig2 6 7 8 8 43b  devg2d 3 S 7 9
27a  brownall 1 1 1 1 43¢ devg2c 1 4 7 7
27b  brownal2 1 1 1 1 43d  devg2d 4 6 8 10
28a  discbvl 1 1 1 2 43e devgle 2 4 7 9
28b discbv2 1 1 1 2 13f  devg2f 3 6 8 10
294 disciel 1 1 2 2 44a dgvba 11 22 30 33
29b discie2 1 1 2 2 44b dgvedb 3 6 8 9
30a broytrit 1 2 3 3 44c  dgv6e 1 5 29 119
30b broytri2 1 2 3 3 44d  dgv6d 1 3 24 97
31a  broybani 2 3 4 5 44e  dgvbe 1 3 14 52
31b  broyban2 2 3 4 D) 45a dgv8a 1 22 29 33
32 lin 1 1 1 1 45b  dgv8b 2 5 9 12
33 laini 1 1 1 1 45c  dgv8c 6 9 27 99
34 1in0 1 i i 1 454 dgvad 3 6 20 89
35a chebyqui 10 15 15 16 45e dgvBe 3 4 14 57

Table 8.3: Number of iterations required to reduce (f(ry) -~ fE*N/(flro) - fuatn
helow four different tolerances.
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Ill-conditioning was also responsible for the failure in problems 10 and 36¢. In
these cases, the algorithm terminated because of a failure in the linesearch. Again,
the objective value has been reduced significantly. In problem 36¢ the algorithm
terminated at a point very close to the solution. In problem 10 the Hessian at the
final iterate is positive definite but very ill-conditioned.

The results of the computer runs are summarized in Tables 8.1 and 8.2. The
column headings have the following meaning:

nr Problem number.

name Problem name.

n Number of variables.

ny Dimension of H;; at the final iterate zj.

f Value of the objective function the final iterate z;.
faxll Norm of the gradient at the final iterate z.
k(H,;) Estimate of the condition number of the final H;;.
k Number of iterations.

nf Number of function evaluations.

cony Convergence information.

y 0 Convergence criteria Cl satisfied with n, = 0.

y 1 Convergence criteria Cl satisfied with ny > 0.

y 2 Convergence criteria C2 satisfied with ny = 0.

y 3 Convergence criteria C2 satisfied with ny > 0.

n 4 Nonconvergent due to failure in linesearch.

n 5 Nonconvergent due to too many iterations (> 600).
#n;’ Number of iterates where n, was positive.
#d, Number of iterates where d was used.

Our experience from working on these problems is thi.t it is possible to reduce
the value of the objective function significantly in a relatively small number of
iterations, as illustrated in Table 8.3. However, stringent convergence criteria such
as those used here may not always be achievable if the Hessian is iil-conditioned at
the solution.

8.3. Barrier test problems

The test problems with a general objective form originate from the barrier function
approach of Resende et al. [RKR89] for solving 0-1 integer programming problems.
The aim of this approach is to find a point z* with all components 1 in the set F,
where F is defined to be

A 2b—- Ae + €
F=qgz:1 -I z< e , (8.1)
I €

for an m x n matrix A and an n-vector b. We consider the case where all elements
of A and b are integers. The vector e denotes a suitably dimensioned vector with
unit components.

If the composite matrix and vector associated with the inequalities of (8.1) are
denoted by A and b, we may write F' = {z : Az < b}.
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This integer feasibility problem is converted into a smooth minimization probleni.
The function to be minimized is the barrier function f defined by

m+2n

f(z)= =In(n - zTe) - ﬁ )" In(ef(b - Az))
=1

N | —

(see Resende et al. [RKR89]). This barrier function does not satisfy the assumptions
of Section 2.1, since the function is only defined for r such that Az < b. Moreover, as
is shown in the appendix. the barrier function tends to minus infinity for a sequence
converging to a point with all components +1. Nevertheless, these functions are
useful as test problems because they have many local minimizers and exhibit many
directions of negative curvature. (Moreover, it was also of interest to see if the
algorithm was able to locate a point in F with all components +1.)

Three different test problems were used, and for each of them the set of points
in F with all components +1 consists of only one point, z*.
Data for barrier test problem 1:

-2 -1 -1 0 0 0 -1

-1 0 0 -2 -1 0 -2

A= 0 -1 0 -1 0 -1 , b= -2
0 0 -2 0 -1 =1 -1

3 2 3 4 2 2 8

T
a) zo=(-09 076 -076 064 020 -020)
b) zo=( -08 064 —064 046 -020 020 ),

Ff=(-1 1 -1 1 1 -1)

Data for barrier test problem 2:

A R 5
-4 -3 —4 -2 -8
T
a) zo=( 090 -010 045 -095) ,
T
b) ro=( 08 008 034 —094),

f=( 1 -1 1 -1)"

Data for barrier test problem 3:

82 4 1
A=| 2 4 4 8 ) b= 13 |,
4 -8 -1 2 -9
a)  zo=( -040 080 020 -0.99),
b)  zo=(-03¢ 078 012 -099 ),

f=(-1 1 1 -1
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nr naeme n ng /S Hoxll x(Hy1) &k nf conv ‘n; #dy
46a barlogia 6 5 -1.841628E+00 1.3E+07 3.E+00 18 22 y 6 19 19
46b barlogid 6 ] 7.626996E-01 2.86-12 3.E+01 7 11 yo 3 3
47a barlog2a 4 3 -1.122621E+00 9.0E+08 2.E+00 16 17 y 6 17 17
47>  barlog2d 4 4 5.805715E-01 3.5E-14 1.E+01 7 8 yo 1 1
48a barlog3a 4 3 ~1.996615E+00 @6.0E+06 3.E+00 16 17 y6 17 17
48b barlog3b 4 4 1.433882E-01 8.9E-15 8.E+00 10 14 yo 2 2
49a Dbarla 6 S 1.618634E-01 2.3E4+06 3.E+00 17 21 y 6 18 18
49> baribdb 6 6 2.144056E+00 T.0E-12 3.E+0t 7 11 vy O 3 3
50a bar2a 4 3 3.771148E-01 B.2E+05 2.E+00 14 15 y 6 1§ 15
50b bar2db 4 4 1.787T059E+00 4.8E-13 1.E+01% 7 8 yO 1 1
51a barda 4 3 1.435501E-01 1.1E+06 2.E+00 15 16 y6 16 16
61b  bar3d 4 4 1.1541786+00 1.1E-11 8.E+00 10 13 y0 3 3

Table 8.4: Results for barrier test problems

For each of the three test problems, two starting points were used. Problems
46a,47a and 48a correspond to starting points for which the sequence {zx}§2, con-
verged to z*. Problems 46b,47b and 48b correspond to starting points for which the
sequence converged to a local minimizer of the barrier function.

Problems 49, 50 and 51 are similar to problems 46, 47 and 48, except that the
objective function is the argum- nt of the logarithmic barrier function, i.e.,

_ (n _ xTI)l/'z
f(z) = (T2 eX(b — Az))H/(mtam)”

=1 ¢

For the same starting points, the same final points were reached in approximately
the same number of iterations.

The barrier problems are not truly unconstrained, since the objective function
is only defined for z such that Az < b. To allow for this, the iteration was modified
s0 that amax was made subject to being no greater than 99.99% of the step to the
boundary of F. If d; was zero, the unit initial steplength was chosen, and when d
was nonzero, a trial value of 0.8 apax was used. The trial step was accepted if the
directional derivative was still negative. Otherwise, the same linesearch as used for
the least-squares test problems was used.

The following criterion was used to decide when a point in F with all components
11 had been reached,

C3. max; {l - Ie,Ta:k|} < 10 /ey.
The results for the barrier test problems are presented in Table 8.4. The column

headings are the same as for the least-squares test problem, and the only difference
is that convergence criteria C3 is denoted by “y 6” in the conv column.

8.4. Practical behaviour of the computed directions

In Section 5 of this paper theoretical properties of the computed directions si, di and
Pr are established. It is shown in Lemma 5.3 that the ratio between the curvature
along the direction of negative curvature, di, and the smallest eigenvalue of Hj is
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uniformly bounded away from zero. Lemmas 5.5 and 5.6 imply that whenever d;
is nonzero, the ratio between the curvature along p; and the smallest eigenvalue of
H, is also uniformly bounded away from zero.

In order to measure the magnitude of the curvature along dg, it is compared
to the smallest eigenvalue of Hx. Figure 8.1 shows the ratio between the curvature
along di and the smallest eigenvalue of H, for those iterates of the least-squares
problems where d; was nonzero. Figure 8.2 shows the corresponding data for the
barrier problems. If 10% of the best possible curvature is regarded as “good”, we
see that this “good” curvature is computed in 95% of the cases for the least-squares
problems and in 98% of the cases for the barrier problems.

Ideally, if di is nonzero, p; should be both a nontrivial direction of negative
curvature and a descent direction that is not too orthogonal to the negative gradient.
Unfortunately, a direction that simultaneously has both these properties may not
exist. In Figures 8.3 and 8.4 we give the ratio between the curvature along pi and
the curvature along dj for iterates for which d, was nonzero. Since dj is intended to
be a good direction of negative curvature, this ratio gives an idea of how much of the
best possible curvature is achieved along p;.. The data for the least-squares problems
is given in Figure 8.3; data for the barrier problems is given in Figure 8.4. Note that
for both classes of problem, the ratio is close to one in most cases. Moreover, a ratio
greater than one is possible if |{px|| < ||dk||. A ratio greater than 0.1 is achieved
in 98% of the cases for the least-squares problems and in 99% of the cases for the
barrier problems.

The direction s is intended to be a good descent direction. In order to inves-
tigate whether this property is inherited by ps, the ratio of the cosine between s,
and g; and the cosine between pi and s; was measured. These ratios are given in
Figure 8.5 for the least-squares problems and in Figure 8.6 for the barrier problems.
In general, this ratio is not as close to one as the curvature ratios. However, a ratio
greater than 0.1 is obtained in 86% of the cases for the least-squares problems and
in 93% of the cases for the barrier problems. We believe that the main reason for
this ratio not bcing as close to one as the other two ratios, is that |[s;|| tends to zero
as the solution is approached, but a nonzero ||di|| will be of order one. Therefore,
because of the way py is constructed, dy will usually dominate s; so that p, = d;.

It is noticeable that the barrier ratios seem better than the least-squares ratios.
This is probably due to the fact that even though both problem classes contain
highly nonlinear problems, the condition number of H,; is generally smaller for the
barrier problems.
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40% 1

20% -

00 01 02 03 04 05 06 07 08 09 10

Figure 8.1: Least-squares problems: Ratio of the curvature along d; to the smallest
eigenvalue of the Hessian. Percentage out of 2013 observations.
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Figure 8.2: Barrier problems: Ratio of the curvature along di to the smallest eigen-
value of the Hessian. Percentage out of 115 observations.
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Figure 8.3: Least-squares problems: Ratio of the curvature along p; to the curvature
along d).. Percentage out of 2013 observations.
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Figure 8.4: Barrier problems: Ratio of the curvature along py to the curvature along
d;. Percentage out of 115 observations.
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20% 1
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Figure 8.5: Least-squares problems: Ratio of the cosine between p, and gi to the
cosine between s; and gix. Percentage out of 2013 observations.
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Figure 8.6: Barrier problems: Ratio of the cosine between p; and g; to the cosine
between s; and g;. Percentage out of 115 observations.
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9. Discussion

This report describes a modified Newton method for unconstrained minimization.
At each iteration a positive-definite portion of the Hessian is factorized using the
Cholesky algorithm. A descent direction is computed if the gradient is nonzero, and
a direction of negative curvature is computed if the Hessian is sufficiently indefinite.
A linear combination of these vectors define a search direction, along which the
next iterate is found. Theoretical properties of the algorithm are established, and
numerical data from a set of test problems are included.

As the algorithm is stated, if the direction of negative curvature is nonzero, it is
always used to form pi. From a practical point of view it is not clear if this is the
best use of dy. It is possible to define a number G such that whenever ||gi|| > G,
we may discard the direction of negative curvature and still obtain the convergence
properties of Section 7. This alternative algorithm would allow a scheme for control-
ling that the cosine between p, and g; is not much smaller than the cosine between
S and gk, hereby ensuring that the search direction is not significantly closer to
orthc_onality to the negative gradient than the descent direction. The significance
of utilizing a direction of negative curvature was investigated by rerunning the test
problems with 3, set to zero for all k. On those problems where a direction of nega-
tive curvature previously had been used, the number of iterations required to satisfy
the reduction of f; given in Table 8.3 tended to increase. Moreover, the number
of problems for which the convergence criteria were not met increased from six to
twelve.

Finally, we note that the convergence results given in Section 7 imply convergence
to a point where the gradient vector is zero and the Hessian matrix has a smallest
eigenvalue greater than a small negative number. Since a point satisfying the second-
order necessary conditions has nonnegative Hessian eigenvalues, it might appear that
the convergence results are somewhat less satisfactory than those usually given for
methods of this type. However, we observe that the magnitude of the bound on the
smallest eigenvalue may be made as small as required by assigning a suitably small
value for the parameter ¢. Small values of ¢ affect only the numerical performance
of the method, and not the theoretical convergence properties. Moreover, it may be
observed from Tables 8.1, 8.2 and 8.4 that in most cases the iterates converged to a
point where n; was equal to n, that is the Hessian was positive definite. The only
exceptions are problems where the Hessian at the solution is very ill-conditioned,
singular or undefined (for some of the barrier problems).

Our overall conclusion from the results is that it was possible to reduce the value
of the objective function significantly in a rather small number of iterations by using
directions of negative curvature whenever the Hessian was indefinite. However, to
meet stringent convergence criteria was not always possible when the Hessian was
very ill-conditioned or singular at the solution. Also, by running the algorithm
without using the direction of negative curvature, we have the impression that the
ability to compute a direction of negative curvature is not only a theoretical tool
to show convergence, but also a helpful device in order to improve robustness and
efficiency.
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A. Appendix: Properties of the Barrier Test Problems

The barrier test problems originate from a barrier function approach proposed by
Resende et al. [RKR89] for solving 0-1 integer programs. Given an m X n matrix A
and an n-vector b, the 0-1 integer program concerns finding a 2 in R™ that belongs
to the set F}, where

FR={2:A2<b, z,=0 or z =1 for i=1,...n}.

We shall consider only the case where A and b have integer coefficients, since the
analysis is simpler in this case.

Applying the linear transformation z = 22 — e, the 0-1 problem is transformed
to an equivalent problem where all components of the integer solution are £1. The
transformed problem is converted into a smooth minimization problem by seeking
values in the set F given by

A 20~ Ae+ ¢
F={z:| -I lz< e ={z: Az < b}.
I e

The aim is to find a point z* in F with components +1 by minimizing the barrier

function
m+2n

3" In(el(b - Az))

m+2n
1=1

f(z) = %ln(n - zTz) -

(see Resende et al. [RKR89)).

Although the barrier function is not defined for a point z* with components +1,
the following lemma shows that the barrier function has a global minimizer at z*,
since there exist sequences converging to z* for which the function tends to minus
infinity.

Lemma A.1. Assume that the matriz A has at least one row. Furthermore, assume
that {z;}2, converges to a point z* € F such that z* has all components +1. If
Az, < b for all k, and if there ezists a positive constant ¢ independent of k, such
that it holds for all k that

vy ¥
v llzk -2

then limg— o f(zk) = —00.

]
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Proof. For clarity, the iteration subscript & is dropped when subscript 7 is used to
denote a particular component of zy.
Using properties of logarithms, f(z) may be rewritten as

_ 1 (Zha(1 = zfy)m/24n
f(z) = ln( ,’-’;,e-T(Qb—Ale+e—Ax)I'If‘=,-(1-—z?)>' (A.1)

Since z* € F with all components +1, it follows that 2b — Ae — Az* > 0 and
consequently
klim eJ(2b — Ae + e — Azi) > 1.

Therefore, it may be assumed without loss of generality that Az, < 2b — Ae + e for
all k. If r denotes the vector whose i-th component is given by r; = |z, — z¥| we get

(Sry (1= 22)" _ (Shymil2 = ri))"
i=i(l -z} [Toiri(2-m)
where it without loss of generality may be assumed that r; < 1 for all . Dividing

both numerator and denominator by the positive quantity (¢Ir)® and using the
existence of the constant ¢, we derive the inequality

i=1 | 2032\ "
SRl < - .
I1 (2 - ;)

If m > 0 then limy_oo(n— 2Tz, )™/2 = 0, and it follows that the argument of the log-
arithm in (A.1) tends to zero as k tends to infinity. Consequently, limy_.o f(zx) =
—oo as required. i

The following lemma shows that there is a one-to-one correspondence between
points in F with all components 1 and points in Fy.

Lemma A.2. The set F\ is nonempty if and only if there exists a point in F with
all components 1.

Proof. Assume that ¢ € Fj. A linear transformation z = 2z ~ ¢ yields z € F with
all components £1.

Assume that z € F with all components £1. Let z = 2z — ¢, and it follows that
z is a vector with all components zero or one, for which Az < b+ %e. However, Az
and b are integer vectors, and therefore it holds that Az < b. Consequently, z € F;.
]

Lemma A.1 implies that the barrier function has a global minimizer at any point
z* in F with all components 1. From Lemma A.2 it follows that if such a global
reinimizer is found, a point in F} may be identified, thereby providing a solution of
the original 0-1 integer program.
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